Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We introduce a nonlinear, multifactor model that generalizes ICA. Our multilinear ICA (MICA) model of image ensembles learns the statistically independent components of multiple factors. Whereas ICA employs linear (matrix) algebra, MICA exploits multilinear (tensor) algebra. We furthermore introduce a multilinear projection algorithm which projects an unlabeled test image into the N constituent mode spaces to simultaneously infer its mode labels. In the context of facial image ensembles, where the mode labels are person, viewpoint, illumination, expression, etc., we demonstrate that the statistical regularities learned by MICA capture information that, in conjunction with our multilinear projection algorithm, improves automatic face recognition.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multilinear independent components analysis


    Beteiligte:


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    911583 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multilinear Subspace Analysis of Image Ensembles

    Vasilescu, M. / Terzopoulos, D. / IEEE | British Library Conference Proceedings | 2003


    Multilinear subspace analysis of image ensembles

    Vasilescu, M.A.O. / Terzopoulos, D. | IEEE | 2003



    Reduced Multilinear Constraints: Theory and Experiments

    Heyden, A. | British Library Online Contents | 1998


    Practical issues when identifying multilinear ship model

    Fabiani, P. / Southampton Institute / Gwent College of Higher Education | British Library Conference Proceedings | 1994