With the development of the Internet of Vehicles(IoV), the combination of networks and vehicles has brought great convenience to people. However, hackers can attack vehicles through technical loopholes in the external network, which seriously affects the driving safety of vehicles. In this paper, we propose a new intrusion detection system (IDS) framework named the Leading Model and Confidence Decision Method (LMCDM). The LMCDM is built on three distinct machine learning models(Extreme Gradient Boosting (XGBoost), random forest (RF), and decision tree (DT)) to select the model exhibiting the best identification performance across attack types. Furthermore, the LMCDM combines prediction confidence to facilitate precise predictions. Finally, the LMCDM model was assessed using the CICIDS2017 dataset, and relative to other IDS systems, F1 scores demonstrated an improvement of no less than 0.88%. The experimental results show the effectiveness of LMCDM in external network intrusion detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Vehicular External Network Intrusion Detection System Based on Ensemble Learning


    Beteiligte:
    Liu, Qian (Autor:in) / Bao, Weijie (Autor:in) / Liu, Qilie (Autor:in)


    Erscheinungsdatum :

    10.10.2023


    Format / Umfang :

    1051151 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    VEHICULAR INTRUSION DETECTION DEVICE

    SAKIYAMA MASAAKI / ADACHI HISASHI / HIROSUE SHOTARO | Europäisches Patentamt | 2021

    Freier Zugriff

    Vehicular Intrusion Detection System for Controller Area Network: A Comprehensive Survey and Evaluation

    Liu, Yangyang / Xue, Lei / Wang, Sishan et al. | ArXiv | 2025

    Freier Zugriff



    Vehicular Cybersecurity Through Intrusion Detection and Prevention Architecture

    Jehle, Isabell A. / Möller, Dietmar P. F. | Springer Verlag | 2019