We consider the problem of determining the structure of high-dimensional data, without prior knowledge of the number of clusters. Data are represented by a finite mixture model based on the generalized Dirichlet distribution. The generalized Dirichlet distribution has a more general covariance structure than the Dirichlet distribution and offers high flexibility and ease of use for the approximation of both symmetric and asymmetric distributions. In addition, the mathematical properties of this distribution allow highdimensional modeling without requiring dimensionality reduction and thus without a loss of information. The number of clusters is determined using the Minimum Message length (MML) principle. Parameters estimation is done by a hybrid stochastic expectation-maximization (HSEM) algorithm. The model is compared with results obtained by other selection criteria (AIC, MDL and MMDL). The performance of our method is tested by real data clustering and by applying it to an image object recognition problem.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MML-Based Approach for High-Dimensional Unsupervised Learning Using the Generalized Dirichlet Mixture


    Beteiligte:
    Bouguila, N. (Autor:in) / Ziou, D. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    286090 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Unsupervised Tracking With the Doubly Stochastic Dirichlet Process Mixture Model

    Sun, Xing / Yung, Nelson H. C. / Lam, Edmund Y. | IEEE | 2016


    Unsupervised Learning of Finite Gaussian Mixture Models (GMMs): A Greedy Approach

    Greggio, Nicola / Bernardino, Alexandre / Santos-Victor, José | Springer Verlag | 2011


    Unsupervised Learning of Finite Gaussian Mixture Models (GMMs): A Greedy Approach

    Greggio, N. / Bernardino, A. / Santos-Victor, J. | British Library Conference Proceedings | 2011