In this work we propose a clustering algorithm that learns on-line a finite gaussian mixture model from multivariate data based on the expectation maximization approach. The convergence of the right number of components as well as their means and covariances is achieved without requiring any careful initialization. Our methodology starts from a single mixture component covering the whole data set and sequentially splits it incrementally during the expectation maximization steps. Once the stopping criteria has been reached, the classical EM algorithm with the best selected mixture is run in order to optimize the solution. We show the effectiveness of the method in a series of simulated experiments and compare in with a state-of-the-art alternative technique both with synthetic data and real images, including experiments with the iCub humanoid robot.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unsupervised Learning of Finite Gaussian Mixture Models (GMMs): A Greedy Approach


    Beteiligte:
    Cetto, Juan Andrade (Herausgeber:in) / Ferrier, Jean-Louis (Herausgeber:in) / Filipe, Joaquim (Herausgeber:in) / Greggio, Nicola (Autor:in) / Bernardino, Alexandre (Autor:in) / Santos-Victor, José (Autor:in)


    Erscheinungsdatum :

    01.01.2011


    Format / Umfang :

    16 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Unsupervised Learning of Finite Gaussian Mixture Models (GMMs): A Greedy Approach

    Greggio, N. / Bernardino, A. / Santos-Victor, J. | British Library Conference Proceedings | 2011


    Unsupervised Learning for Finite Mixture Models Based on a Modified Gibbs Sampling

    Liu, W. / Han, C. / Shi, Y. | British Library Online Contents | 2009


    Finite asymmetric generalized Gaussian mixture models learning for infrared object detection

    Elguebaly, T. / Bouguila, N. | British Library Online Contents | 2013



    A Complete Unsupervised Learning of Mixture Models for Texture Image Segmentation

    Zhang, Xiangrong / Yang, Xiaoyun / Chen, Pengjuan et al. | IEEE | 2008