The adoption of smart cards in urban public transport has fundamentally changed how transport providers manage and plan their networks. Traveller information services, in particular, have leveraged this contextual data for targeting passengers and providing relevant information. Thus, it becomes increasingly relevant for the next generation of services to obtain on-time contextual passenger information, to support the development of intelligent information services. In this paper an adaptation of the Top-K algorithm is proposed for predicting journey destination, applied to different scenarios in public transport. The performance and efficiency are analysed and compared to a decision tree classifier. Finally, the feasibility and potential of applying the proposed methods to large-scale systems in a real-world environment is discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    How to Predict Journey Destination for Supporting Contextual Intelligent Information Services?


    Beteiligte:
    Costa, Vera (Autor:in) / Fontes, Tania (Autor:in) / Costa, Pedro Mauricio (Autor:in) / Galvao, Teresa (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    612008 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Information for the intelligent journey

    Soliman, J.I. | Tema Archiv | 1989


    Information for the intelligent journey

    Soliman,J.I. / ISATA Co-ordinating Commitee,GB | Kraftfahrwesen | 1989


    Learning to Predict Driver Route and Destination Intent

    Simmons, R. / Browning, B. / Yilu Zhang, et al. | IEEE | 2006