Locality Preserving Projection (LPP), as a linear version of manifold learning algorithm, has attracted considerable interests in recent years. When LPP is applied to image representation and recognition, PCA is used for dimensionality reduction first. In this paper, the theoretical foundation of why LPP can perform in such orthonormal transformed subspace is presented. Based on this theoretical framework, we prove that LPP can be directly implemented in discrete cosine transform (DCT) domain. The motivation is derived from the widely applications of DCT in JPEG and MPEG standard on the one hand, and from the initially reduction of computational cost on the other hand. Experiments demonstrate competitive performance of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Locality Preserving Projection in Orthogonal Domain


    Beteiligte:
    Zheng, Zhonglong (Autor:in) / Zhao, Jianmin (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    456076 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fault feature fusion based on entropy-weighted nuisance attribute projection and orthogonal locality preserving projection

    Yang, Di / Lv, Yong / Yuan, Rui et al. | British Library Conference Proceedings | 2022


    Locality preserving and global discriminant projection with prior information

    Zhang, H. / Deng, W. / Guo, J. et al. | British Library Online Contents | 2010


    ONPPn: Orthogonal Neighborhood Preserving Projection with Normalization and its applications

    Koringa, Purvi A. / Mitra, Suman K. | British Library Online Contents | 2018


    Locality-Preserving Partial Least Squares Regression

    Wang, Jing / Zhou, Jinglin / Chen, Xiaolu | Springer Verlag | 2022

    Freier Zugriff