With the progressive reduction of cost, in the market it is possible to find a very large assortment of Unmanned Aerial Vehicles (UAV) that are used in general for non-warlike activities. Unfortunately, it may happen that malicious subjects use these objects to cause damage or inconvenience, then the availability of solutions to predict these situations can be crucial for alerting the population and saving lives. In this work, we present a technique to identify drones from their micro-Doppler features, by analyzing their variations during the flight. The characterization of the features and how they evolve in time is useful to predict dangerous situations and classify the drone type, with the help of Machine Learning techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    mmWave Radar Features Extraction of Drones for Machine Learning Classification


    Beteiligte:


    Erscheinungsdatum :

    23.06.2021


    Format / Umfang :

    6895511 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Drone classification using mmWave micro-Doppler radar measurements

    Ciattaglia, Gianluca / Senigagliesi, Linda / Alidori, Daniele et al. | IEEE | 2022


    Drones Classification based on Millimeter Wave Radar Cross Section via Deep Learning

    Wang, Lina / Meng, Li / Simpson, Oluyomi et al. | IEEE | 2024


    Tracking Drones with Drones Using Millimeter Wave Radar

    Baptista, Sedat Dogru Rui / Marques, Lino | TIBKAT | 2020


    Tracking Drones with Drones Using Millimeter Wave Radar

    Dogru, Sedat / Baptista, Rui / Marques, Lino | Springer Verlag | 2019