As the number of drones, or Unmanned Aerial Vehicles (UAVs), rapidly rises, their detection becomes a very important task in outdoor surveillance, to prevent accidents or inappropriate use. With this goal it is also important to collect as much information as possible about the drone and this can be obtained with radar systems, exploiting the micro-Doppler signature of the drone: preliminary information can be obtained by using machine learning (ML) classification techniques but also by measuring the rotational speed of the propellers. The proposed approach described in this work can provide a better understanding of the detected UAVs which can be used to improve the safety of outdoor spaces.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Drone classification using mmWave micro-Doppler radar measurements


    Beteiligte:


    Erscheinungsdatum :

    27.06.2022


    Format / Umfang :

    9268158 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Exploring Radar Micro-Doppler Signatures for Recognition of Drone Types

    Jun Yan / Huiping Hu / Jiangkun Gong et al. | DOAJ | 2023

    Freier Zugriff




    Radar Micro-Doppler Signature Classification using Dynamic Time Warping

    Smith, Graeme E / Woodbridge, Karl / Baker, Chris J | IEEE | 2010