Autonomous vehicles are equipped with a multi-modal sensor setup to enable the car to drive safely. The initial calibration of such perception sensors is a highly matured topic and is routinely done in an automated factory environment. However, an intriguing question arises on how to maintain the calibration quality throughout the vehicle’s operating duration. Another challenge is to calibrate multiple sensors jointly to ensure no propagation of systemic errors. In this paper, we propose Camera Lidar Calibration Network (CaLiCaNet), an end-to-end deep self-calibration network which addresses the automatic calibration problem for pinhole camera and Lidar. We jointly predict the camera intrinsic parameters (focal length and distortion) as well as Lidar-Camera extrinsic parameters (rotation and translation), by regressing feature correlation between the camera image and the Lidar point cloud. The network is arranged in a Siamese-twin structure to constrain the network features learning to a mutually shared feature in both point cloud and camera (Lidar-camera constraint). Evaluation using KITTI datasets shows that we achieve 0.154° and 0.059 m accuracy with a reprojection error of 0.028 pixel with a single-pass inference. We also provide an ablative study of how our end-to-end learning architecture offers lower terminal loss (21% decrease in rotation loss) compared to isolated calibration.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    End-to-End Lidar-Camera Self-Calibration for Autonomous Vehicles


    Beteiligte:
    Rachman, Arya (Autor:in) / Seiler, Jurgen (Autor:in) / Kaup, Andre (Autor:in)


    Erscheinungsdatum :

    04.06.2023


    Format / Umfang :

    1791823 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LIDAR-to-camera transformation during sensor calibration for autonomous vehicles

    ZHANG ZHENGYU / YANG LIN / WHEELER MARK DAMON | Europäisches Patentamt | 2024

    Freier Zugriff


    LiDAR eyes for autonomous vehicles

    Thakker, T. / Pulikkaseril, C. / Lam, S. et al. | SPIE | 2019


    Camera-to-LiDAR calibration and validation

    PAUL AUREL DIEDERICHS / MAURILIO DI CICCO / JUN SHERN CHAN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Panoptic Based Camera and Lidar Fusion for Distance Estimation in Autonomous Driving Vehicles

    Jose, Edwin / P, Aparna M / Patil, Mrinalini et al. | British Library Conference Proceedings | 2022