Map information is of crucial importance to ensure the safety and reliability of vehicle, no matter indoor or outdoor, it should reflect the real-time changes of environment. Existing indoor map update mechanisms have several common limitations such as small update range, long cycle, large amount of update data, high cost and poor currency. Therefore, we present a multi-vehicle collaborative indoor map update scheme based on edge-cloud architecture to realize real-time autonomous map updating. This scheme can be achieved through continuous monitoring, tagging, identification, and layering of the environment during driving process. Compared with traditional map update schemes, experimental results show that our scheme can effectively realize the collaborative map update in indoor environment, enhance the map update efficiency, reduce the update delay, and improve the adaptability of vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Edge-Cloud Based Vehicle SLAM for Autonomous Indoor Map Updating


    Beteiligte:
    Zhu, Zepeng (Autor:in) / Liu, Jiajia (Autor:in) / Wang, Jiadai (Autor:in) / Kato, Nei (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    1918491 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    vSLAM: vision-based SLAM for autonomous vehicle navigation

    Goncalves, Luis / Karlsson, Niklas / Ostrowski, Jim et al. | SPIE | 2004


    End-cloud collaborative urban road condition updating method based on Occ and SLAM

    FENG CHENGTAO / QIAN RUI | Europäisches Patentamt | 2024

    Freier Zugriff



    Indoor navigation for aerial vehicle using monocular visual SLAM

    He, Xiang / Cai, Zhihao / Huang, Dongze et al. | IEEE | 2014