In urban rail systems, the kinetic energy of trains can be converted into electrical energy when the train applies regenerative braking. The converted energy is called recovery energy that can be transmitted backward to the power supply network for accelerating nearby trains. The previous studies in using recovery energy focus on optimizing timetable to synchronize the traction and braking times of trains. Instead of optimizing timetable, this paper develops a train trajectory optimization model to minimize the net energy consumption by improving the efficiency of recovery energy utilization. A genetic algorithm(GA) is used to find the optimal train trajectory. Finally, we present a numerical example based on Beijing Yizhuang subway line data to illustrate the effectiveness of the developed model on energy saving.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An optimization method for train driving trajectory in urban rail systems


    Beteiligte:
    Liu, Fan (Autor:in) / Xun, Jing (Autor:in) / Bin, Ning (Autor:in)


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    420870 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimal Trajectory Planning and Train Scheduling for Urban Rail Transit Systems

    Wang, Yihui ;De Schutter, Bart ;van den Boom, Ton | SLUB | 2016


    Optimal Trajectory Planning and Train Scheduling for Urban Rail Transit Systems 2016

    Wang, Yihui / Ning, Bin / Boom, Ton et al. | TIBKAT | 2016


    Optimal Trajectory Planning and Train Scheduling for Urban Rail Transit Systems 2016

    Wang, Yihui / Ning, Bin / Boom, Ton van den et al. | SLUB | 2016


    Driving position of rail train and rail train

    ZHANG LI / YANG ZHIYUE / JI ENXIANG et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Research on Urban Rail Train Routing Optimization

    Zhao, Mingfu / Cheng, Jie | ASCE | 2015