This paper proposes a new association measure to be used in mRMR framework for feature selection. Also a filter-type approach is suggested unlike successive selection in all previous mRMR methods. Three different combinations of association are evaluated for classification accuracy and error. The reduced dataset is used in support vector machines applied to two-class classification in datasets particularly designed to benchmark methods for outlier detection. The proposal reduces classification error to acceptable levels.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Feature selection in support vector machines for outlier detection


    Beteiligte:


    Erscheinungsdatum :

    01.03.2018


    Format / Umfang :

    1399935 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Feature Selection for Scene Categorization Using Support Vector Machines

    V., Devendran / Thiagarajan, Hemalatha / Santra, A. K. et al. | IEEE | 2008



    Feature Selection for Intrusion Detection with Neural Networks and Support Vector Machines

    Mukkamala, Srinivas / Sung, Andrew H. | Transportation Research Record | 2003


    Fuzzy-rough feature selection aided support vector machines for Mars image classification

    Shang, C. / Barnes, D. | British Library Online Contents | 2013


    Lane detection using support vector machines

    Kim, Singhoon / Park, Jeongho / Cho, Seong-Ik et al. | Tema Archiv | 2007