Understanding lane is an essential step to provide more realistic information for video-based navigation systems. In this paper, the authors present a novel idea to understand lane from a live video captured in a moving vehicle. More specifically, 1) lane markings are extracted first. Then, 2) color information of lane markings are fed into support vector machines to decide if it is yellow lane or not. By combining information from database, it is possible to decide if we are in the leftmost, middle, or the rightmost lane, which allows us to provide more realistic navigation information to drivers. Exhaustive simulation results are provided to show the robustness of the proposed idea.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Lane detection using support vector machines


    Beteiligte:
    Kim, Singhoon (Autor:in) / Park, Jeongho (Autor:in) / Cho, Seong-Ik (Autor:in) / Park, Soonyoung (Autor:in) / Choi, Kyoungho (Autor:in)


    Erscheinungsdatum :

    2007


    Format / Umfang :

    5 Seiten, 7 Bilder, 3 Tabellen, 13 Quellen



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Incident detection using support vector machines

    Yuan, Fang | Online Contents | 2003


    Support vector machines

    Garay, Michael J. / Mazzoni, Dominic / Davies, Roger et al. | NTRS | 2004


    Airborne vehicle detection using SURF-descriptors and Support Vector Machines

    Kozempel, K. / Hausburg, M. / Reulke, R. | IEEE | 2011



    Aerodynamic Data Modeling Using Support Vector Machines

    Fan, Huiyuan / Dulikravich, George / Han, Zhenxue | AIAA | 2004