This work presents a method for detecting and tracking vehicles in traffic videos collected from urban highways. The method efficiently handles numerous vehicle targets with low computational complexity, making it ideal for real-time driver assisting systems. The method uses segmentation to create a quick bounding box to detect moving vehicles, while a particle filter is used to track these vehicles. The Hungarian matching algorithm is later used to solve the association of tracked vehicles in each video frame. The proposed method and an established vehicle tracking method, Camshift Meanshift tracking with Kalman filtering (CMT-KF), were compared and evaluated on the collected traffic videos. The proposed method resulted in a 52% reduction in tracking failures.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hungarian-Particle Filtering Based Segmentation for On-Road Visual Vehicle Detection and Tracking




    Erscheinungsdatum :

    07.03.2022


    Format / Umfang :

    1052894 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Augmented Particle Filtering for Efficient Visual Tracking

    Shen, C. / Brooks, M. J. / van den Hengel, A. | British Library Conference Proceedings | 2005