Visual tracking is one of the key tasks in computer vision. The particle filter algorithm has been extensively used to tackle this problem due to its flexibility. However the conventional particle filter uses system transition as the proposal distribution, frequently resulting in poor priors for the filtering step. The main reason is that it is difficult, if not impossible, to accurately model the target's motion. Such a proposal distribution does not take into account the current observations. It is not a trivial task to devise a satisfactory proposal distribution for the particle filter. In this paper we advance a general augmented particle filtering framework for designing the optimal proposal distribution. The essential idea is to augment a second filter's estimate into the proposal distribution design. We then show that several existing improved particle filters can be rationalised within this general framework. Based on this framework we further propose variant algorithms for robust and efficient visual tracking. Experiments indicate that the augmented particle filters are more efficient and robust than the conventional particle filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Augmented particle filtering for efficient visual tracking


    Beteiligte:
    Chunhua Shen, (Autor:in) / Brooks, M.J. (Autor:in) / van den Hengel, A. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    233179 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Augmented Particle Filtering for Efficient Visual Tracking

    Shen, C. / Brooks, M. J. / van den Hengel, A. | British Library Conference Proceedings | 2005


    Robust camera pose tracking for augmented reality using particle filtering framework

    Ababsa, F. / Mallem, M. | British Library Online Contents | 2011




    Integrating the projective transform with particle filtering for visual tracking

    Bouttefroy, P.L.M. / Bouzerdoum, A. / Phung, S.L. et al. | Tema Archiv | 2011