Validating motion planning algorithms for autonomous vehicles on a real system is essential to improve their safety in the real world. Open-source initiatives, such as Autoware, provide a deployable software stack for real vehicles. However, such driving stacks have a high entry barrier, so that integrating new algorithms is tedious. Especially new research results are thus mostly evaluated only in simulation, e.g., within the CommonRoad benchmark suite. To address this problem, we present CR2AW, a publicly available interface between the CommonRoad framework and Autoware. CR2AW significantly simplifies the sim-to-real transfer of motion planning research, by allowing users to easily integrate their CommonRoad planning modules into Autoware. Our experiments both in simulation and on our research vehicle showcase the usefulness of CR2AW.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Simplifying Sim-to-Real Transfer in Autonomous Driving: Coupling Autoware with the CommonRoad Motion Planning Framework


    Beteiligte:
    Wursching, Gerald (Autor:in) / Mascetta, Tobias (Autor:in) / Lin, Yuanfei (Autor:in) / Althoff, Matthias (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    4001139 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Automatic Traffic Scenario Conversion from OpenSCENARIO to CommonRoad

    Lin, Yuanfei / Ratzel, Michael / Althoff, Matthias | IEEE | 2023


    MULTIMODAL MOTION PLANNING FRAMEWORK FOR AUTONOMOUS DRIVING VEHICLES

    ZHANG YAJIA / LI DONG / ZHANG LIANGLIANG et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    CommonRoad-Reach: A Toolbox for Reachability Analysis of Automated Vehicles

    Liu, Edmond Irani / Wursching, Gerald / Klischat, Moritz et al. | IEEE | 2022