PHYSEC based message authentication can, as an alternative to conventional security schemes, be applied within Ultra Reliable Low Latency Communication (URLLC) scenarios in order to meet the requirement of secure user data transmissions in the sense of authenticity and integrity. In this work, we investigate the performance of supervised learning classifiers for discriminating legitimate transmitters from illegimate ones in such scenarios. We further present our methodology of data collection using Software Defined Radio (SDR) platforms and the data processing pipeline including e.g. necessary preprocessing steps. Finally, the performance of the considered supervised learning schemes under different side conditions is presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Supervised Learning for Physical Layer Based Message Authentication in URLLC Scenarios


    Beteiligte:


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    258463 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    URLLC Physical Layer Authentication based on non-linear Supervised Learning

    Weinand, Andreas / Lipps, Christoph / Karrenbauer, Michael et al. | IEEE | 2023



    Learning Enabled Adaptive Multiple Attribute-based Physical Layer Authentication

    Fang, Xiaojie / Yin, Xinyu / Mei, Lin et al. | IEEE | 2020


    Physical Layer Authentication in Private Campus Networks based on Machine Learning

    Kuruvatti, Nandish P. / Mallikarjun, Sachinkumar B. / Kusumapani, Sai Charan et al. | IEEE | 2023


    Wireless channel-based message authentication

    Al-Momani, Ala'a / Kargl, Frank / Waldschmidt, Christian et al. | IEEE | 2015