In this paper, we propose an adaptive multi-attributes based physical layer authentication framework for enhanced authenticity provisioning. Instead of optimizing the "threshold" for a preset PHY-layer signature, this paper resort to exploiting and selecting multiple historical better performed PHY-layer attributes for authentication enhancement. In particular, the authenticator of the proposed scheme is designed to be capable of recording the historically performance of each potential attribute. Based on which, the most effective PHY-layer attributes (MEA) would be chosen to improve the reliability of the PHY-layer authentication. This paper experimentally proves that the dimension extension on PHY-layer signature attributes effectively enhances authenticator’s capability in signal discrimination. However, with more attribute to observe, it also complicates the predicting and authenticating procedure. Therefore, a learning-based search algorithm is then formulated to facilitate the MEA selection procedure. Both theoretical analysis and experiment results are given to demonstrate the efficiency and superiority of the proposed scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning Enabled Adaptive Multiple Attribute-based Physical Layer Authentication


    Beteiligte:
    Fang, Xiaojie (Autor:in) / Yin, Xinyu (Autor:in) / Mei, Lin (Autor:in) / Zhang, Ning (Autor:in) / Sha, Xuejun (Autor:in) / Qiu, Jinghui (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    3294306 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    URLLC Physical Layer Authentication based on non-linear Supervised Learning

    Weinand, Andreas / Lipps, Christoph / Karrenbauer, Michael et al. | IEEE | 2023


    Physical Layer Authentication in Private Campus Networks based on Machine Learning

    Kuruvatti, Nandish P. / Mallikarjun, Sachinkumar B. / Kusumapani, Sai Charan et al. | IEEE | 2023


    Supervised Learning for Physical Layer Based Message Authentication in URLLC Scenarios

    Weinand, Andreas / Sattiraju, Raja / Karrenbauer, Michael et al. | IEEE | 2019



    Autoencoder based Physical Layer Authentication for UAV Communications

    Senigagliesi, Linda / Ciattaglia, Gianluca / Gambi, Ennio | IEEE | 2023