According to the high-order nonlinearity and parameter uncertainty of the ship steering dynamics, it is difficult to establish the accurate mathematical model by using normal identification methods. To solve this problem, a new kind of Least Squares Support Vector Regression based on the Particle Swarm Optimization (PSO-LSSVR) is proposed. This method can select the parameters of LSSVR automatically without trial and error, thus ensure the accuracy of parameters optimization. Apply this method to the model identification of the ship steering dynamics, and compare the identification effect with the experimental reference data. The PSO-LSSVR is able to establish the system model effectively, the structure is simple and generalization ability is well.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Investigation of steering dynamics ship model identification based on PSO-LSSVR


    Beteiligte:
    Liu, Sheng (Autor:in) / Song, Jia (Autor:in) / Li, Bing (Autor:in) / Li, Gaoyun (Autor:in)


    Erscheinungsdatum :

    01.12.2008


    Format / Umfang :

    607554 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Identification of ship steering dynamics

    Astroem, K.J. / Kaellstroem, C.G. | Tema Archiv | 1976


    Identification of Ship Steering Dynamics Based on ACA-SVR

    Sheng, L. / Jia, S. / Bing, L. et al. | British Library Conference Proceedings | 2008


    Sensor fault diagnosis for electro-hydraulic actuator based on QPSO-LSSVR

    Ting Li / Yongping Yu / Jian Wang et al. | IEEE | 2016


    Dynamics of automatic ship steering system

    Goclowski, J. / Gelb, A. | Engineering Index Backfile | 1966


    Ship steering device and ship steering method

    HARA NAOHIRO / HAYASHI AKIYOSHI / HIROSE TOSHIMITSU | Europäisches Patentamt | 2015

    Freier Zugriff