In this paper, we present the concept of cooperative autonomous driving using cooperative perception. The cooperative perception can provide upcoming traffic situations ahead, even beyond line-of-sight and field-of-view. From a control perspective, a spatial map for navigation planning is extended up to the boundary of connected vehicles in a see-through manner. By leveraging this augmented perception capability, a better driving decision can be accomplished in terms of traffic flow efficiency and safety improvement. For this purpose, we propose a mirror neuron inspired intention awareness algorithm along with planning and control methods using the algorithm. We demonstrate the feasibility of our proposals through simulations and experiments on the road.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Cooperative autonomous driving using cooperative perception and mirror neuron inspired intention awareness


    Beteiligte:
    Kim, Seong-Woo (Autor:in) / Liu, Wei (Autor:in) / Ang, Marcelo H. (Autor:in) / Seo, Seung-Woo (Autor:in) / Rus, Daniela (Autor:in)


    Erscheinungsdatum :

    01.11.2014


    Format / Umfang :

    972446 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CoPEM: Cooperative Perception Error Models for Autonomous Driving

    Piazzoni, Andrea / Cherian, Jim / Vijay, Roshan et al. | IEEE | 2022