The proliferation of Unmanned Aerial Vehicles (UAVs) has brought about transformative advancements across industries, accompanied by new security challenges. This study introduces a novel approach to detecting intruder signals in UAV s using sparsity-based machine-learning techniques. Utilizing the Masked Sparse Bottleneck Centroid-Encoder (MSBCE), an artificial neural network-based feature selection model, we conducted feature pruning on manually derived features from raw WiFi traffic signals. Remarkably, leveraging MSBCE enabled us to achieve exceptional prediction accuracy of 100% across five diverse UAV datasets, even with a sparse feature subset of merely one to two features. This breakthrough promises faster runtime predictions and reduced resource usage (CPU time and memory) on smaller devices, owing to the compact UAV feature set determined by MSBCE. Building on MSBCE's proven effectiveness in high-dimensional biological and big datasets, this study highlights its potential as a state-of-the-art feature selection model in UAV security applications. Through this work, we aim to drive advancements in UAV security, fostering safer and more secure deployment of UAV technology across various domains.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhanced UAV Security: Optimizing Accuracy and Efficiency with MSBCE Feature Selection


    Beteiligte:


    Erscheinungsdatum :

    29.04.2024


    Format / Umfang :

    1416604 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Adaptive distance selection for optimizing efficiency

    ELFLEIN JOHANNES / VAN GELIKUM MARK | Europäisches Patentamt | 2024

    Freier Zugriff

    ADAPTIVE DISTANCE SELECTION FOR OPTIMIZING EFFICIENCY

    LIEB JOHANNES / VAN GELIKUM MARK | Europäisches Patentamt | 2020

    Freier Zugriff

    Adaptive Distance Selection for Optimizing Efficiency

    ELFLEIN JOHANNES / VAN GELIKUM MARK | Europäisches Patentamt | 2020

    Freier Zugriff

    Optimizing Feature Selection for Industrial Casting Defect Detection Using QLESCA Optimizer

    Hamad, Qusay Shihab / Saleh, Sami Abdulla Mohsen / Suandi, Shahrel Azmin et al. | Springer Verlag | 2024