A hybrid feature selection method is proposed to distinguish the salient features that allow identifying the viewpoint underlying a text review, that is, to determine its sentiment polarity. This method makes use of fundamental pre-processing tasks known as filter and wrapper techniques. The effectiveness of this approach is demonstrated on a data set where each document is represented by two distinct feature vectors based on two different sets of rules.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimizing Feature Selection Techniques for Sentiment Classification


    Beteiligte:
    Uribe, D. (Autor:in)


    Erscheinungsdatum :

    01.11.2011


    Format / Umfang :

    149430 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimizing Feature Selection for Industrial Casting Defect Detection Using QLESCA Optimizer

    Hamad, Qusay Shihab / Saleh, Sami Abdulla Mohsen / Suandi, Shahrel Azmin et al. | Springer Verlag | 2024



    New Feature Selection Process to Enhance Naïve Bayes Classification

    Tejaswini, Oruganti / Aswath, Shakthi.K.P / Geethika, Khadavilli Ramya et al. | IEEE | 2018


    Feature Selection for Web Page Classification Using Swarm Optimization

    B. Leela Devi / A. Sankar | BASE | 2015

    Freier Zugriff

    Orthographic Comparison Revealed by Ambient Sentiment Classification

    Arunadevi, B. / Saravanan, D. / Villallba-Condori, Klinge et al. | IEEE | 2021