Naive Bayes is one of the states of art classification algorithm for data mining applications. Numerous classification techniques have been implemented using Naïve Bayes in the past works. The widely used Mutual Information for feature selection is an empirical method. In this paper, we have used three more variations of mutual information as feature selection methods. The performance of simple and robust Naïve Bayes algorithm is enhanced by the new feature selection method. The benchmark datasets of UCI repository are used to prove the robustness of the feature selection method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    New Feature Selection Process to Enhance Naïve Bayes Classification


    Beteiligte:


    Erscheinungsdatum :

    01.03.2018


    Format / Umfang :

    6461998 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improving Naive Bayes for Classification

    Jiang, L. / Cai, Z. / Wang, D. | British Library Online Contents | 2010


    Classification of Covid-19 Vaccines tweets using Naïve Bayes Classification

    Philip, Jeethu / Thatha, Venkata Nagaraju / Harshini, M. et al. | IEEE | 2022


    Implementation of Naïve Bayes Classification Method for Predicting Purchase

    Harahap, Fitriana / Harahap, Ahir Yugo Nugroho / Ekadiansyah, Evri et al. | IEEE | 2018


    Instance Cloning Local Naive Bayes

    Jiang, L. / Zhang, H. / Su, J. et al. | British Library Conference Proceedings | 2005