This paper uses machine learning to predict the second-hand car trading cycle. In order to enhance the expressivity of the model, we processed the original data by merging data, dividing data into boxes, creating new features, processing outliers, and using principal component analysis to reduce the dimension of features. Then, a random forest was used for model training, and the prediction data of the vehicle transaction cycle was fitted by the 50% discount cross-validation method. The relationship between each feature and the second-hand car transaction cycle was obtained. Finally, the prediction model of the second-hand car transaction cycle is established. In this paper, the mean absolute error (MAE) of the fusion model is 4.72 in the training set and 10.32 in the test set. The model has achieved high accuracy in predicting the vehicle transaction cycle.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Car Trading Cycle Prediction based on Random Forest Algorithm


    Beteiligte:
    Yu, Lei (Autor:in) / Yan, Haizhang (Autor:in) / Liu, Linkai (Autor:in) / Yi, Shangru (Autor:in) / Zhao, YiShi (Autor:in)


    Erscheinungsdatum :

    15.04.2022


    Format / Umfang :

    4480282 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Water Level Prediction using Random Forest Algorithm

    Sudhakar, Kattupalli / Reddy Mallireddy, Sai Manvitha / Tallapureddy, Praveena et al. | IEEE | 2023


    Pavement Surface Condition Index Prediction Based on Random Forest Algorithm

    Yu, Ting / Pei, Li-Ii / Li, Wei et al. | ASCE | 2021



    Prediction of Traffic Accident Severity Based on Random Forest

    Jianjun Yang / Siyuan Han / Yimeng Chen | DOAJ | 2023

    Freier Zugriff

    Research on Flight Delay Prediction Based on Random Forest

    Hu, Peng / Zhang, Jianping / Li, Ning | IEEE | 2021