Taxi-out time prediction is one of the key elements required for successful implementation of Airport Collaborative Decision Making (A-CDM) system. In this paper, we discuss an application of a Machine Learning technique called Random Forest algorithm to predict taxi-out time. Using information retrieved from Incheon International airport’s A-CDM and METAR databases, the model is trained and tested. This paper presents the process of selecting explanatory variables (i.e., features) using feature importance and demonstrates the prediction accuracy of the resulting model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Taxi-Out Time Prediction at a Busy Airport using Random Forest Algorithm


    Beteiligte:
    Kim, Jihoon (Autor:in) / Baik, Hojoing (Autor:in)


    Erscheinungsdatum :

    03.10.2021


    Format / Umfang :

    1719660 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    AIRPORT TAXI TIME INFORMATION

    GAERTNER MARCO / BAUDIN MARTIN | Europäisches Patentamt | 2023

    Freier Zugriff

    AIRPORT TAXI TIME INFORMATION

    GAERTNER MARCO / BAUDIN MARTIN | Europäisches Patentamt | 2023

    Freier Zugriff

    Airport Taxi-Out Prediction Using Approximate Dynamic Programming

    Balakrishna, Poornima / Ganesan, Rajesh / Sherry, Lance | Transportation Research Record | 2008


    Airport taxi radar

    Engineering Index Backfile | 1952


    Taxi-Out Time Prediction Model at Charles de Gaulle Airport

    Herrema, Floris / Curran, Richard / Visser, Hendrikus et al. | AIAA | 2018