In the rapidly evolving field of autonomous driving, reliable prediction is pivotal for vehicular safety. However, trajectory predictions often deviate from actual paths, particularly in complex and challenging environments, leading to significant errors. To address this issue, our study introduces a novel method for Dynamic Occupancy Set (DOS) prediction, it effectively combines advanced trajectory prediction networks with a DOS prediction module, overcoming the shortcomings of existing models. It provides a comprehensive and adaptable framework for predicting the potential occupancy sets of traffic participants. The innovative contributions of this study include the development of a novel DOS prediction model specifically tailored for navigating complex scenarios, the introduction of precise DOS mathematical representations, and the formulation of optimized loss functions that collectively advance the safety and efficiency of autonomous systems. Through rigorous validation, our method demonstrates marked improvements over traditional models, establishing a new benchmark for safety and operational efficiency in intelligent transportation systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction


    Beteiligte:
    Shao, Wenbo (Autor:in) / Xu, Jiahui (Autor:in) / Yu, Wenhao (Autor:in) / Li, Jun (Autor:in) / Wang, Hong (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1334888 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Goal-directed occupancy prediction for autonomous driving

    MARCHETTI-BOWICK MICOL / KANIARASU POORNIMA / HAYNES GALEN CLARK | Europäisches Patentamt | 2022

    Freier Zugriff

    Goal-Directed Occupancy Prediction for Autonomous Driving

    MARCHETTI-BOWICK MICOL / KANIARASU POORNIMA / HAYNES GALEN CLARK | Europäisches Patentamt | 2021

    Freier Zugriff

    Occupancy Prediction-Guided Neural Planner for Autonomous Driving

    Liu, Haochen / Huang, Zhiyu / Lv, Chen | IEEE | 2023


    An Enhanced Safe and Reliable Autonomous Driving Platform Using ROS2

    Cui, Hang / Zhang, Jiaming / Norris, William R. | British Library Conference Proceedings | 2020


    Strategies Towards Reliable Scene Understanding for Autonomous Driving

    Gasperini, Stefano | TIBKAT | 2025

    Freier Zugriff