For the scenario-based development and testing of automated and connected driving an unknown huge number of different driving scenarios is needed. In this paper we propose an approach that extracts driving scenarios from real driving data without any requirement of predefinitions or rules. Instead of searching for specific scenarios in the data, we cluster recurring patterns and interpret the resulting clusters as potential scenario groups. The method shows promising results. In the exemplary clustering we are able to detect four main scenario groups and corner cases within the clusters. With an huge amount of data this method could be used in the future to set up a scenario database in an automatic manner.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pattern Recognition for Driving Scenario Detection in Real Driving Data


    Beteiligte:


    Erscheinungsdatum :

    19.10.2020


    Format / Umfang :

    878594 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    PATTERN RECOGNITION FOR DRIVING SCENARIO DETECTION IN REAL DRIVING DATA

    Montanari, Francesco / German, Reinhard / Djanatliev, Anatoli | British Library Conference Proceedings | 2020


    Driving Scenario Trajectories

    Demetriou, Andreas | DataCite | 2024


    ABNORMAL DRIVING PATTERN RECOGNITION SYSTEM

    PANDI PRABAKARAN | Europäisches Patentamt | 2025

    Freier Zugriff

    Decision-Oriented Driving Scenario Recognition Based on Unsupervised Learning

    Deng, Nanshan / Jiang, Kun / Cao, Zhong et al. | TIBKAT | 2021


    ADS DRIVING SCENARIO GENERATION

    GYLLENHAMMAR MAGNUS / LINDBERG CARL | Europäisches Patentamt | 2024

    Freier Zugriff