Automated maintenance has become a necessity for Unmanned Aerial Vehicle (UAV) systems to function in remote environments for an extended period of time with a higher number of vehicles. Once removed from the energy management loop, the human operator is free to concentrate on higher level task management and data analysis. This paper firstly describes the design, test and construction of an autonomous Ground Recharge Stations (GRS) for battery-powered quadrotor helicopter. In order to incorporate the charging of the quadrotors in the overall swarm behaviour, the focus of the research presented here has been to reduce the charging phase of a single vehicle by developing safer electrical contacts and using a balancer in the charging process. The amount of extra current available from the new design easily pushed the flying-time/charging-time ratio of the quadrotors over 1. Then the paper describes a novel approach for the integration of this technology into an energy efficient multi-agent system. The development of a prioritisation function and queuing protocols between the UAVs and GRSs guarantee an optimised solution to the assignment problem dependent on the mission profile. Results show that the system's energy management remains efficient regardless of number and position of the platforms, or nature of the environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Energy management in swarm of Unmanned Aerial Vehicles


    Beteiligte:
    Leonard, Jeremie (Autor:in) / Savvaris, Al (Autor:in) / Tsourdos, Antonios (Autor:in)


    Erscheinungsdatum :

    2013-05-01


    Format / Umfang :

    1071780 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autonomous Aerial Mapping Using a Swarm of Unmanned Aerial Vehicles

    Alsayed, Ahmad / Nabawy, Mostafa R. / Arvin, Farshad | TIBKAT | 2022


    Autonomous Aerial Mapping Using a Swarm of Unmanned Aerial Vehicles

    Alsayed, Ahmad / Nabawy, Mostafa R. / Arvin, Farshad | AIAA | 2022


    Verifiable control of a swarm of unmanned aerial vehicles

    Bennet, D J / McInnes, C R | SAGE Publications | 2009



    Decentralized Control of a Swarm of Unmanned Aerial Vehicles

    Ronchieri, Elisabetta / Innocenti, Mario | AIAA | 2007