Vehicular traffic and congestion is a major challenge worldwide because of rapid growth in urban population. The congestion can be mitigated to enhance traffic management by predicting accurate travel time of the vehicles in the traffic. This research developed a novel methodology utilizing machine learning on real-time traffic data collected through Bluetooth sensors deployed at traffic intersections to estimate travel time. The research evaluates performance and accuracy of five different prediction systems for travel time estimation highlighting the effectiveness of the machine learning models in accurately predicting travel time. The research also explores the development of the machine learning model predicting the travel time during peak hours, considering traffic lights impact on travel time between intersections. This research findings contribute to the efficient and reliable travel time prediction systems development, helping commuters making informed decisions and improve traffic management strategies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting Travel Time in Complex Road Structures using Deep Learning


    Beteiligte:


    Erscheinungsdatum :

    08.01.2024


    Format / Umfang :

    1830513 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Road travel time predicting method, system, and device

    MA GUOZHENG / DUAN YONG / XU DEMING et al. | Europäisches Patentamt | 2015

    Freier Zugriff

    Network Scale Travel Time Prediction using Deep Learning

    Hou, Yi / Edara, Praveen | Transportation Research Record | 2018


    Deep Learning System for Travel Speed Predictions on Multiple Arterial Road Segments

    Nguyen, Hoang / Bentley, Christopher / Kieu, Le Minh et al. | Transportation Research Record | 2019


    TRAVEL ROAD DETERMINATION APPARATUS AND TRAVEL ROAD DETERMINATION METHOD

    FUJII MASATOSHI / SHIMOTANI MITSUO / DAIKOKU KENTARO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Travel Time Prediction Utilizing Hybrid Deep Learning Models

    Bharathi, Dhivya / Sopeña, Juan Manuel González / Clarke, Siobhan et al. | Transportation Research Record | 2023

    Freier Zugriff