Obstacle detection is a hot topic in intelligent visual surveillance system. This paper proposed an automatic obstacle detection method applying to traffic surveillance, which can be used to prevent the traffic accident. In our framework, the images are captured by the traffic surveillance. The GMM (Gaussian Mixture Model) is taken as a short-term background, and foreground objects are extracted by the algorithm SUOG (Selective Updating of GMM). At last, a detection method related object speed and FROI (Flushed Region of Interest) algorithm is proposed. FROI algorithm is based on the concept of connected domain and used to eliminate noises outside road and improve real-time capability. Experiments demonstrate that the proposed obstacle detection method can detect the obstacle effectively and accurately, it can fulfill the requirement of practical application.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A new automatic obstacle detection method based on selective updating of Gaussian mixture model


    Beteiligte:
    Lan, Jinhui (Autor:in) / Jiang, Yaoliang (Autor:in) / Yu, Dongyang (Autor:in)


    Erscheinungsdatum :

    01.06.2015


    Format / Umfang :

    788921 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Updating Gaussian Mixture Weights Using Posterior Estimates

    Durant, Dalton / Popov, Andrey A. / Zanetti, Renato | IEEE | 2025




    Automatic driving obstacle detection device

    MOU HONGLEI / MENG YANG / WANG SHUOSHI | Europäisches Patentamt | 2024

    Freier Zugriff

    OBSTACLE DETECTION DEVICE, OBSTACLE DETECTION METHOD, AND OBSTACLE DETECTION PROGRAM

    OKABE YOSHIMASA / YAMADA SEISUKE | Europäisches Patentamt | 2023

    Freier Zugriff