Lidar sensors are an essential sensor for autonomous driving and advanced driver assistance systems. This paper proposes an accurate method for an online and unsupervised estimation of the yaw-mounting error of lidar sensors. A precise estimation is essential, when the extracted information of the lidar, like objects or obstacles, are fused with other sensors or interpreted in a road context, like lane assignment. The approach is based on a grid map, which is a discretized representation of the environment around the ego vehicle and enables an efficient processing of the large number of lidar detections. The proposed algorithm extracts features out of grid maps of two measurement cycles and reconstructs the ego movement. The comparison with the vehicle odometry enables the reconstruction of the lidar misalignment. By combining a large number of measurement cycles, a robust and precise estimation of the lidar misalignment is obtained. Features from the image domain could be directly applied, enabling an efficient and real-time calibration in a productive system. The system identifies itself valid driving sections and performs a continuous recalibration. Simulation and real experiments show a promising accuracy with an orientation error below 0.05° for roof-top lidars and 0.1° for low-cost lidars.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online and Unsupervised Lidar Calibration based on Grid Maps


    Beteiligte:


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    404064 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    IMU-based Online Multi-lidar Calibration

    Das, Sandipan / Boberg, Bengt / Fallon, Maurice et al. | IEEE | 2024


    Lidar to camera calibration for generating high definition maps

    WHEELER MARK DAMON / YANG LIN | Europäisches Patentamt | 2021

    Freier Zugriff

    Lidar to camera calibration for generating high definition maps

    WHEELER MARK DAMON / YANG LIN | Europäisches Patentamt | 2020

    Freier Zugriff

    Relative Flash LiDAR Aided-Inertial Navigation using Surfel Grid Maps

    Liu, Bangshang / Sazdovski, Vasko / Janschek, Klaus | IEEE | 2022


    Online Orientation Prior For Dynamic Grid-Maps

    Wessner, Joseph / Utschick, Wolfgang | IEEE | 2021