This paper demonstrates the use of non-negative tensor factorization to extract underlying spatio-temporal movement patterns from large-scale urban trajectory data. Individual trajectory data obtained from public transport smart card systems and roadside Bluetooth detectors are represented as a dynamic graph of region-to-region flows to obtain structured data describing flow interactions between regions across time-of-day and day-of-week. Tensor factorization is then applied to these dynamic graphs to characterize traveler movements on different days of the week. The results unveil distinct day-of-week patterns in public transport passenger and roadway vehicle movements, providing insight into the diverse aspects of urban mobility.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Urban Trajectory Analytics: Day-of-Week Movement Pattern Mining Using Tensor Factorization


    Beteiligte:


    Erscheinungsdatum :

    01.07.2019


    Format / Umfang :

    3038143 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Trajectory Pattern Mining Based on Road Network Detection

    Wu, Junwei / Zhu, Yunlong / Ku, Tao et al. | British Library Online Contents | 2015



    COLLECTING MOVEMENT ANALYTICS USING AUGMENTED REALITY

    JACOBS PHILIP C / LI RANXING | Europäisches Patentamt | 2021

    Freier Zugriff

    Collecting movement analytics using augmented reality

    JACOBS PHILIP C / LI RANXING | Europäisches Patentamt | 2023

    Freier Zugriff