Abstract In this paper, we present our work on clustering and prediction of temporal evolution of global congestion configurations in a large-scale urban transportation network. Instead of looking into temporal variations of traffic flow states of individual links, we focus on temporal evolution of the complete spatial configuration of congestions over the network. In our work, we pursue to describe the typical temporal patterns of the global traffic states and achieve long-term prediction of the large-scale traffic evolution in a unified data-mining framework. To this end, we formulate this joint task using regularized Non-negative Tensor Factorization, which has been shown to be a useful analysis tool for spatio-temporal data sequences. Clustering and prediction are performed based on the compact tensor factorization results. The validity of the proposed spatio-temporal traffic data analysis method is shown on experiments using simulated realistic traffic data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization


    Beteiligte:
    Han, Yufei (Autor:in) / Moutarde, Fabien (Autor:in)


    Erscheinungsdatum :

    15.08.2014


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Controlling Sparseness in Non-negative Tensor Factorization

    Heiler, M. / Schnorr, C. | British Library Conference Proceedings | 2006


    Sparse image coding using a 3D non-negative tensor factorization

    Hazan, T. / Polak, S. / Shashua, A. | IEEE | 2005


    Sparse Image Coding Using a 3D Non-Negative Tensor Factorization

    Hazan, T. / Polak, S. / Shashua, A. et al. | British Library Conference Proceedings | 2005