Autonomous transport vehicles are very important for smart factories. Computer vision studies for autonomous vehicles in industrial environments are considerably less than that of outdoor applications. Recognition of safety signs has an important place in safe movement of vehicles and safety of humans in factories. In this study, we built a test environment for smart factories and collected a visual data set including some important safety signs for the safe and comfortable movement of the vehicles in smart factories. Then, we developed a visual object detection system using YOLOv3 deep learning model and tested it by using autonomous robots. In our tests, an accuracy of 76.14% mAP (mean average precision) score was obtained in the dataset we collected.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual Object Detection System for Autonomous Vehicles in Smart Factories


    Beteiligte:


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    2631565 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Smart IoT Enabled End-to-End 3D Object Detection System for Autonomous Vehicles

    Ahmed, Imran / Jeon, Gwanggil / Chehri, Abdellah | IEEE | 2023


    Concurrent visual multiple lane detection for autonomous vehicles

    Gupta, Rachana Ashok / Snyder, Wesley / Pitts, W.Shepherd | Tema Archiv | 2010


    Object Detection in Autonomous Vehicles: A Performance Analysis

    Lim, Yuxiang / Tiang, Sew Sun / Lim, Wei Hong et al. | Springer Verlag | 2024


    Smart signs for autonomous vehicles

    DYER JOHN WESLEY / NEMEC PHILIP / NEWBY JOSHUA et al. | Europäisches Patentamt | 2022

    Freier Zugriff