Autonomous driving research has predominantly focused on LiDAR and vision-based methodologies. While LiDAR excels in accuracy and robustness, its high cost is prohibitive; vision-based systems, alternatively, are more economical but limited in scope and precision. To overcome these limitations, this paper presents a cross-modal scene recognition algorithm integrating semantic information to facilitate a seamless positional transformation between vision devices and LiDAR maps. The core objective is to enable precise initial localization within LiDAR point cloud maps, thereby establishing a consistent linkage between visual perception and spatial mapping. The algorithm utilizes a cross-modal interaction network to synergize features from both modalities, significantly narrowing the semantic gap. Further enhancing this framework, graph neural networks are employed to deepen the semantic understanding and improve alignment between disparate modal scenes. This method demonstrates remarkable efficiency in decoding complex environmental contexts and elevating match precision. Validated on the KITTI dataset, the algorithm achieved a commendable average F1 score of 0.815, affirming its value in advancing autonomous navigation systems with more accurate and reliable scene recognition capabilities.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Novel Cross-Modal Scene Recognition Algorithm Leveraging Semantic Information


    Beteiligte:
    Hu, Changhao (Autor:in) / Liu, Hengyu (Autor:in) / Huang, Bangzhen (Autor:in) / Huang, Lianfen (Autor:in) / Gao, Zhibin (Autor:in) / Zhao, Yifeng (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1477907 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Editable-DeepSC: Cross-Modal Editable Semantic Communication Systems

    Yu, Wenbo / Chen, Bin / Zhang, Qinshan et al. | IEEE | 2024


    LEVERAGING SEMANTIC INFORMATION FOR A MULTI-DOMAIN VISUAL AGENT

    GOPALKRISHNA VIJAY KUMAR BAIKAMPADY / FARAKI MASOUD / SUH YUMIN et al. | Europäisches Patentamt | 2025

    Freier Zugriff


    Towards Traffic Scene Description: The Semantic Scene Graph

    Zipfl, Maximilian / Zollner, J. Marius | IEEE | 2022