Systems and methods for leveraging semantic information for a multi-domain visual agent. Semantic information can be leveraged to obtain a multi-domain visual agent. To train the multi-domain visual agent, questions can be sampled from question templates for domain-specific label spaces to obtain a unified label space. The domain-specific labels from the domain-specific label spaces can be mapped into natural language descriptions (NLD) to obtain mapped NLD. The mapped NLD can be converted into prompts by combining the questions sampled from the unified label space and the annotations. The semantic information can be learned by iteratively generating outputs from tokens extracted from the prompts using a large-language model (LLM). The multi-domain visual agent (MDVA) can be trained using the semantic information.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    LEVERAGING SEMANTIC INFORMATION FOR A MULTI-DOMAIN VISUAL AGENT


    Beteiligte:

    Erscheinungsdatum :

    08.05.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06V / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung



    A Novel Cross-Modal Scene Recognition Algorithm Leveraging Semantic Information

    Hu, Changhao / Liu, Hengyu / Huang, Bangzhen et al. | IEEE | 2024



    Knowledge-Aided Semantic Communication Leveraging Probabilistic Graphical Modeling

    Wan, Haowen / Yang, Qianqian / Tang, Jiancheng et al. | IEEE | 2024


    Multi-layer map: Augmenting semantic visual memory

    Papapetros, Ioannis Tsampikos / Balaska, Vasiliki / Gasteratos, Antonios | IEEE | 2020


    Multi-Domain Semantic-Segmentation using Multi-Head Model

    Masaki, Shota / Hirakawa, Tsubasa / Yamashita, Takayoshi et al. | IEEE | 2021