The probabilistic multi-hypothesis tracker (PMHT), a tracking algorithm of considerable theoretical elegance based on the expectation-maximization algorithm, will be considered for the problem of multiple target tracking with multiple sensors in clutter. In addition to position observations, continuous measurements associated with the unique, constant—and statistically unknown—feature of each target are incorporated to jointly estimate the states and features of the targets for the sake of tracking and classification, leading to a bootstrapped implementation of the PMHT. In addition, the information matrix for the stacked vector of states for all the targets at all the time steps during the observation time is derived.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Bootstrapped PMHT with Feature Measurements


    Beteiligte:
    Lu, Qin (Autor:in) / Domrese, Katherine (Autor:in) / Willett, Peter (Autor:in) / Bar-Shalom, Yaakov (Autor:in) / Pattipati, Krishna (Autor:in)


    Erscheinungsdatum :

    01.10.2017


    Format / Umfang :

    577399 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    The Pedestrian PMHT

    Efe, M. / Willett, P. / International Society of Information Fusion et al. | British Library Conference Proceedings | 2002


    PMHT with the True Association Probability

    Dunham, Darin T. | IEEE | 2007


    The turbo PMHT

    Yanhua Ruan, / Willett, P. | IEEE | 2004


    PMHT with timing uncertainty

    Cheung, Brian / Davey, Samuel / Gray, Douglas | IEEE | 2014


    The pedestrian PMHT

    Efe, M. / Ruan, Y. / Willett, P. | IEEE | 2002