This paper proposes a Hybrid Dynamic-Kinematic Extended Kalman Filter (EKF) for the online estimation of train position, velocity and acceleration along the track. In the proposed EKF commonly used kinematic measurements are fused with dynamic information, i.e. active power used, to obtain more accurate estimates. This also results in an onboard-only measurements based model that will enable the implementation of next generation traffic management systems. Two case studies, based on real data of train runs on a Swiss line, are presented to demonstrate the goodness of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Hybrid Dynamic-Kinematic EKF for Train Trajectory Estimation


    Beteiligte:


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    549314 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Valve Train Kinematic and Dynamic Simulation

    Pederiva, Robson / Andreatta, Éderson Claudio | SAE Technical Papers | 2016


    Hybrid Kinematic-Dynamic Sideslip and Friction Estimation

    Carnier, S / Corno, M / Savaresi, SM | BASE | 2023

    Freier Zugriff

    A hybrid stochastic approach for offline train trajectory reconstruction

    Sessa, Pier Giuseppe / De Martinis, Valerio / Bomhauer-Beins, Axel et al. | Springer Verlag | 2021


    Single-Train Trajectory Optimization

    Lu, Shaofeng / Hillmansen, Stuart / Ho, Tin Kin et al. | IEEE | 2013


    Single-Train Trajectory Optimization

    Lu, S | Online Contents | 2013