This paper presents a technique for the high resolution enhancement of remote sensing imagery degraded in a random channel and contaminated with composed noise (additive and multiplicative). The proposed method aggregates the Constraint Least Square (CLS), the Bayes Minimum Risk (BMR), the maximum entropy Median Filter (MF) and the Variational Analysis (VA) techniques. In the fused strategy, we first apply the MF technique unified with the CLS algorithm, next, we unify the BMR iterative algorithm with the VA techniques, and last, we aggregate the unified MF-CLS and VA-BMR techniques in the resulting fused MF-CLS-BMR-VA method with the objective of an enhanced image reconstruction with improved resolution performances.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Aggregated Regularization of Remote Sensing Image Restoration Using Deterministic and Statistic Techniques


    Beteiligte:


    Erscheinungsdatum :

    01.09.2009


    Format / Umfang :

    757786 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fusion of regularization terms for image restoration

    Mignotte, M. | British Library Online Contents | 2010



    Adaptive regularization in image restoration by unsupervised learning

    Wong, H.-S. / Guan, L. | British Library Online Contents | 1998


    Restoration of solar radio images using adaptive regularization techniques based on clustering

    Machado, W.R.S. / Mascarenhas, N.D.A. / Costa, J.E.R. | IEEE | 2004