In this paper we present a technique for localized image regularization using a Modified Hopfield Neural Network (MHNN). The algorithm forms a segmented map of the image and classifies it into several clusters, or regions, and assigns each region a regularization parameter according to its local statistics and the prior knowledge about the image obtained by a Bayesian Minimum Risk (BMR) restoration method. The image segmentation is performed over the BMR restored image. First, the user selects arbitrarily at least one region, and makes a subjective decision to choose the best estimate from among a set of restored images with different regularization parameter applied to the user-selected region. Then, using this decision the algorithm sets up a perception-based selection of the different regularization parameters for restoring in an adaptive fashion the whole image employing the MHNN computations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Spatially Adaptive Regularization Image Restoration Using a Modified Hopfield Network


    Beteiligte:


    Erscheinungsdatum :

    01.09.2007


    Format / Umfang :

    691404 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive regularization in image restoration by unsupervised learning

    Wong, H.-S. / Guan, L. | British Library Online Contents | 1998



    An Adaptive Segmentation-Based Regularization Term for Image Restoration

    Mignotte, M. | British Library Conference Proceedings | 2005


    Optimization of regularization operators for adaptive least squares image restoration

    Bundschuh, B. O. / Russian Academy of Sciences / Samara State Aerospace University et al. | British Library Conference Proceedings | 1994


    A Hopfield neural network for adaptive control

    MEARS, M. / SMITH, R. / CHANDLER, P. et al. | AIAA | 1993