A predicting model based on long-short-term-memory (LSTM) and gated recurrent unit (GRU) is proposed to assist autonomous vehicles (AVs) to drive safely. To understand the behaviors of surroundings under a mixed scene of vehicles, bicycles, and pedestrians, the proposed model can predict the future trajectory of each object with models constructed by GRU. Since different objects have diverse behaviors, this paper applies different models to different categories for vehicles, pedestrians, and cyclists. For each object, the proposed model considers three observed trajectories with different time steps as the input data to predict a more accurate future trajectory. The proposed model is verified and compared with LSTM and GRU on KITTI dataset in the conducted experiments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory of Prediction of Immediate Surroundings for Autonomous Vehicles Using Hierarchical Deep Learning Model


    Beteiligte:
    Hsu, Pei Yun (Autor:in) / Lin Huang, Mei (Autor:in) / Chiang, Hsin-Han (Autor:in)


    Erscheinungsdatum :

    23.10.2020


    Format / Umfang :

    890180 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Trajectory Planning for Autonomous Vehicles Using Hierarchical Reinforcement Learning

    Naveed, Kaleb Ben / Qiao, Zhiqian / Dolan, John M. | IEEE | 2021





    TRAJECTORY PREDICTION FOR AUTONOMOUS VEHICLES USING ATTENTION MECHANISM

    PRONOVOST ETHAN MILLER | Europäisches Patentamt | 2024

    Freier Zugriff