Autonomous vehicles (AVs) are expected to dramatically redefine the future of traffic. However, there are still plenty of challenges need to be figured out before L5 self-driving era coming. One of them is to precisely predict the moving trajectory of traffic agents which near the AV, such as cars, pedestrians, and motorcycles. In this paper, we use ResNet to forecast AVs’ trajectories, which is able to capture the features of different dimensions to achieve better predictions. By feeding the raw input picture, the model output s three trajectories and their confidence levels respectively, which means each trajectory has its own confidence level. Experimental results show that our method performs better than other deep learning methods. The loss function value of ResNet-34 model is lower than that of VGG-16 model and VGG-19 model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    ResNet-Based Model for Autonomous Vehicles Trajectory Prediction


    Beteiligte:
    Zhang, Zhuoren (Autor:in)


    Erscheinungsdatum :

    15.01.2021


    Format / Umfang :

    828305 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Motion Prediction for Autonomous Vehicles Using ResNet-Based Model

    ZeHao, Yao / Wang, LiQian / Liu, Ke et al. | IEEE | 2021


    An Efficientnet Based Method for Autonomous Vehicles Trajectory Prediction

    Tang, Haiyang / Wang, Yujun / Yuan, Wenjie et al. | IEEE | 2021


    TRAJECTORY PREDICTION FOR AUTONOMOUS VEHICLES USING ATTENTION MECHANISM

    PRONOVOST ETHAN MILLER | Europäisches Patentamt | 2024

    Freier Zugriff

    TRAJECTORY PREDICTION FOR AUTONOMOUS VEHICLES USING ATTENTION MECHANISM

    PRONOVOST ETHAN | Europäisches Patentamt | 2024

    Freier Zugriff

    Neural Network Based Lane Change Trajectory Prediction in Autonomous Vehicles

    Tomar, Ranjeet Singh / Verma, Shekhar | Tema Archiv | 2011