Recent spatial-temporal graph-based deep learning methods for Traffic Flow Prediction (TFP) problems have shown superior performance in modeling higher-level spatial interactions and temporal correlations. However, most of these methods suffer from post-fusion efficiency difficulty caused by separate explorations of the spatial communications and the temporal dependencies, which could result in delayed and biased predictions. To address that, we propose a Traffic Gated Graph Neural Networks (Traffic-GGNN) for real-time-fused spatial-temporal representation modeling. Firstly, we adopt bidirectional message passing to capture the location-wise spatial interactions. Secondly, we apply a GRU-based module to explore and aggregate the spatial interactions with the temporal correlations in a real-time fusion way. Lastly, we introduce a self-attention mechanism to reweight the location-based importance and produce the final prediction. Moreover, our proposed model allows end-to-end training thus it is easy to scale to diverse types of traffic datasets and yield better efficiency and effectiveness on three real-world datasets (SZ-taxi, Los-loop, and PEMS-BAY).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic-GGNN: Predicting Traffic Flow via Attentional Spatial-Temporal Gated Graph Neural Networks


    Beteiligte:
    Wang, Yang (Autor:in) / Zheng, Jin (Autor:in) / Du, Yuqi (Autor:in) / Huang, Cheng (Autor:in) / Li, Ping (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.10.2022


    Format / Umfang :

    5207647 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction

    Hou, Hongxin / Ning, Nianwen / Shi, Huaguang et al. | IEEE | 2022



    Spatial-Temporal Position-Aware Graph Convolution Networks for Traffic Flow Forecasting

    Zhao, Yiji / Lin, Youfang / Wen, Haomin et al. | IEEE | 2023


    Traffic Flow Prediction Based on Spatio-Temporal Aggregated Graph Neural Networks

    Wu, Shuangshuang / Hu, Yao | Transportation Research Record | 2025


    Spatial‐temporal correlation graph convolutional networks for traffic forecasting

    Ru Huang / Zijian Chen / Guangtao Zhai et al. | DOAJ | 2023

    Freier Zugriff