Recent works demonstrate that capturing correlations between road network nodes is crucial to improving traffic flow forecasting accuracy. In general, there are spatial, temporal, and joint spatial-temporal correlations between two nodes, whose strength is related to spatial and temporal position factors. For example, traffic congestion that occurs at a traffic hub has a wider and stronger impact than that at a branch road. Moreover, the above impacts can vary with temporal position. Although spatial-temporal graph convolution networks have become a popular paradigm for modeling those correlations, there are still three problems with existing models: (i) failing to effectively model joint spatial-temporal correlations; (ii) ignoring spatial and temporal position factors when modeling the aforementioned correlations; and (iii) failing to capture distinct spatial-temporal patterns of each node. To cope with the above issues, this paper proposes a novel Spatial-Temporal Position-aware Graph Convolution Network (STPGCN) for traffic flow forecasting. Specifically, a trainable embedding module is constructed to represent the spatial and temporal positions of the nodes. Subsequently, a spatial-temporal position-aware relation inference module is proposed to adaptively infer the correlation weights of the three important spatial-temporal relations. Based on this, the generated spatial-temporal relations are integrated into a graph convolution layer for aggregating and updating node features. Finally, we design a spatial-temporal position-aware gated activation unit in the graph convolution, to capture the node-specific pattern features under the guidance of position embedding. Extensive experiments on six real-world datasets demonstrate the superiority of our model in terms of prediction performance and computational efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Spatial-Temporal Position-Aware Graph Convolution Networks for Traffic Flow Forecasting


    Beteiligte:
    Zhao, Yiji (Autor:in) / Lin, Youfang (Autor:in) / Wen, Haomin (Autor:in) / Wei, Tonglong (Autor:in) / Jin, Xiyuan (Autor:in) / Wan, Huaiyu (Autor:in)


    Erscheinungsdatum :

    01.08.2023


    Format / Umfang :

    3009163 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting

    Liu, Kun / Zhu, Yifan / Wang, Xiao et al. | Transportation Research Record | 2024


    Traffic Flow Prediction Using Novel Spatial-Temporal Multi-Head Attention Graph Convolution Networks

    Cheng, Yuan / Peng, Cheng / Wang, Ze et al. | Transportation Research Record | 2024


    Graph transformer based dynamic multiple graph convolution networks for traffic flow forecasting

    Yongli Hu / Ting Peng / Kan Guo et al. | DOAJ | 2023

    Freier Zugriff

    Graph transformer based dynamic multiple graph convolution networks for traffic flow forecasting

    Hu, Yongli / Peng, Ting / Guo, Kan et al. | Wiley | 2023

    Freier Zugriff