This study addresses the issues of accuracy and efficiency in train wheel defect detection by proposing a method based on ROCKET and LightGBM. Using wheel pressure time-series data obtained from sensors, the ROCKET algorithm is employed for time-series feature extraction. Combined with the LightGBM model and Bayesian optimization techniques, an effective defect detection method is established. Experimental results validate that this method significantly improves detection accuracy, providing robust technical support for railway transportation safety.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Train Wheel Defect Detection with ROCKET Feature Extraction and LightGBM


    Beteiligte:
    Su, Kangyou (Autor:in) / Li, Chaoming (Autor:in) / Yu, Guoqing (Autor:in) / Yu, Hongling (Autor:in) / Zheng, Zhiying (Autor:in)


    Erscheinungsdatum :

    26.07.2024


    Format / Umfang :

    1175896 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Train positioning system based on sleeper defect feature detection

    WU SONGRONG / ZHENG YINGJIE / HU JIEYU et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    A METHOD FOR DETECTION OF WHEEL FLATTEN DEFECT ON A MOVING TRAIN

    AKTAS METIN / YILMAZER PINAR / GUNEL ETHEM HAKAN | Europäisches Patentamt | 2018

    Freier Zugriff

    Rocket train telephones

    Engineering Index Backfile | 1937


    Train wheel damage detection device

    TANG JIANJUN | Europäisches Patentamt | 2021

    Freier Zugriff

    Train wheel and railway turnout matched with train wheel

    ZHOU YUREN | Europäisches Patentamt | 2020

    Freier Zugriff