This paper discusses an adaptive self-organizing concurrent system (ASOCS), whose functionality relies on incremental, supervised learning paradigm. ASOCS can be trained to recognize categories in response to an arbitrary binary input vector. ASOCS is comprised of many boolean processing nodes distributed throughout the system. An adaptation unit is connected to all the logic nodes in order to supervise consistency checking and minimize the system function representation. Depending upon the adaptation unit directives, boolean processing nodes interactively pass messages, add new nodes, delete redundant nodes from the network. These actions lead to self-modification and self-organization. After presenting the pertinent features of a generic ASOCS, this paper discusses an extension leading to improved generalization and more compact knowledge representation.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards extending adaptive self-organizing concurrent system architecture


    Beteiligte:
    Bartczak, A. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    342497 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Towards Extending Adaptive Self-Organizing Concurrent System Architecture

    Bartczak, A. / IEEE; Hong Kong Chapter of Signal Processing | British Library Conference Proceedings | 1994


    Concurrent Self-Organizing Maps for Multispectral Facial Image Recognition

    Neagoe, Victor-Emil / Mugioiu, Alexandru-Cristian / Tudoran, Cristian-Tudor | IEEE | 2007


    A self-organizing adaptive aircraft control system.

    RICHARDE, H. M. / RANG, E. R. | AIAA | 1971



    Concurrent Self-Organizing Maps — A Powerful Artificial Neural Tool for Biometric Technology

    Neagoe, Victor-Emil / Ropot, Armand-Dragos | Springer Verlag | 2009