In this paper, Deep Belief Network(DBN) is used for drug-related webpages classification. HTML parsing is used to extract image-label text and body text, FOCARSS method is used to choose effective images. text representation is generated by BOW model, images representation is generated by BOF model. We concatenate images and text representation to generate final representation. It is shown that DBN’s classification accuracy is higher than BPNN’s classification accuracy, and better than that of single-modal information.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Webpages Classification Based on Deep Belief Network Using Images and Text Information


    Beteiligte:
    Hu, Ruiguang (Autor:in) / Gao, Shibo (Autor:in) / Yang, Libo (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    422614 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Structural Health Diagnosis Using Deep Belief Network Based State Classification

    Tamilselvan, P. / Wang, P. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2012



    Deep Belief Network based state classification for structural health diagnosis

    Tamilselvan, Prasanna / Wang, Yibin / Wang, Pingfeng | IEEE | 2012


    Deep belief network for automated modulation classification in cognitive radio

    Mendis, Gihan J. / Wei, Jin / Madanayake, Arjuna | IEEE | 2017


    Intelligent Transportation Activity Recognition Using Deep Belief Network

    Alazeb, Abdulwahab / Khan, Danyal / Jalal, Ahmad | IEEE | 2024