In this paper, we propose low-complexity binarized deep belief network (DBN) based deep learning approach along with noise resilient spectral correlation function as a feature characterization mechanism for automated modulation classification (AMC). Through simulation results, we have shown the detection accuracy of the proposed method is above than 90% when the channel SNR ≥ 0 dB and classification accuracy remains more than 85% for all the considered modulation schemes in multi-path fading channels with SNR 0 dB. Furthermore, as shown in our simulation results, the performance of our proposed binarized DBN based method is comparable to the regular DBN for SCF pattern based AMC. We consider 4FSK, 16QAM, BPSK, QPSK and OFDM with BPSK subcarrier modulations in our simulations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep belief network for automated modulation classification in cognitive radio


    Beteiligte:
    Mendis, Gihan J. (Autor:in) / Wei, Jin (Autor:in) / Madanayake, Arjuna (Autor:in)


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    725969 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Structural Health Diagnosis Using Deep Belief Network Based State Classification

    Tamilselvan, P. / Wang, P. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2012



    Deep Belief Network based state classification for structural health diagnosis

    Tamilselvan, Prasanna / Wang, Yibin / Wang, Pingfeng | IEEE | 2012