Aircraft trajectory prediction aims to estimate the future movements of the aircraft, which is a crucial step for air traffic management such as capacity estimation and conflict detection. In this paper, we present a context-aware trajectory prediction method, which generates the future movements based on both the aircraft's past status and the contextual information such as the pilot and controller intent and the environmental conditions. The proposed framework consists of 1) a Trajectory Encoder that captures the history behaviors and the social interactions of the aircraft, 2) a Context Encoder that extracts latent features from contextual information, and 3) a Transformer-based Decoder that generates future trajectories based on a diffusion model. Specifically, we model the trajectory prediction as the reverse diffusion process where we first gradually add noise to the ground-truth trajectory and then train a neural network to learn the reverse of this diffusion process conditioned on the output of the trajectory encoder and the context encoder. We conduct experiments on real-world aircraft trajectories collected at Singapore Changi Airport in December 2019, which correspond to one-week ADS-B data before the start of the COVID-19 pandemic. The experimental results show that our proposed approach outperforms existing methods by a significant margin.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Context-aware Aircraft Trajectory Prediction with Diffusion Models


    Beteiligte:
    Yin, Yifang (Autor:in) / Zhang, Sheng (Autor:in) / Zhang, Yicheng (Autor:in) / Zhang, Yi (Autor:in) / Xiang, Shili (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    1305749 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intention-Aware Denoising Diffusion Model for Trajectory Prediction

    Liu, Chen / He, Shibo / Liu, Haoyu et al. | IEEE | 2025


    TRAJECTORY PREDICTION USING DIFFUSION MODELS

    JIANG CHIYU / CORNMAN ANDRE LIANG / PARK CHEOLHO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    A context-aware pedestrian trajectory prediction framework for automated vehicles

    Kalatian, Arash / Farooq, Bilal | ArXiv | 2021

    Freier Zugriff

    Context-Aware Intention and Trajectory Prediction for Urban Driving Environment

    Meghjani, Malika / Verma, Shashwat / Eng, You Hong et al. | Springer Verlag | 2020


    Implicit Scene Context-Aware Interactive Trajectory Prediction for Autonomous Driving

    Lan, Wenxing / Li, Dachuan / Hao, Qi et al. | IEEE | 2024