This paper addresses intention and trajectory prediction of exo-vehicles in an urban driving environment. Urban environments pose challenging scenarios for self-driving cars, specifically pertaining to traffic light detection, negotiating paths at the intersections and sometimes even overtaking illegally parked cars in narrow streets. This complex task of autonomously driving while considering anomalous situations make urban driving conditions unique when compared to highway driving. In order to overcome these challenges, we propose to use road contextual information to predict driving intentions and trajectories of surrounding vehicles. The intention prediction is obtained using a recurrent neural network and the trajectory is predicted using a polynomial model fitting of the past lateral and longitudinal components of the vehicle poses and road contextual information. The integrated process of intention and trajectory prediction is performed in real-time by deploying and testing on a self-driving car in a real urban environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Context-Aware Intention and Trajectory Prediction for Urban Driving Environment


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Xiao, Jing (Herausgeber:in) / Kröger, Torsten (Herausgeber:in) / Khatib, Oussama (Herausgeber:in) / Meghjani, Malika (Autor:in) / Verma, Shashwat (Autor:in) / Eng, You Hong (Autor:in) / Ho, Qi Heng (Autor:in) / Rus, Daniela (Autor:in) / Ang, Marcelo H. (Autor:in)

    Kongress:

    International Symposium on Experimental Robotics ; 2018 ; Buenos Aires, Argentina November 05, 2018 - November 08, 2018



    Erscheinungsdatum :

    23.01.2020


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Context-Aware Intention and Trajectory Prediction for Urban Driving Environment

    Meghjani, Malika / Verma, Shashwat / Eng, You Hong et al. | TIBKAT | 2020


    INTENTION-DRIVEN TRAJECTORY PREDICTION FOR AUTONOMOUS DRIVING

    Fan, Shiwei / Li, Xiangxu / Li, Fei | British Library Conference Proceedings | 2021


    Intention-Aware Denoising Diffusion Model for Trajectory Prediction

    Liu, Chen / He, Shibo / Liu, Haoyu et al. | IEEE | 2025


    Implicit Scene Context-Aware Interactive Trajectory Prediction for Autonomous Driving

    Lan, Wenxing / Li, Dachuan / Hao, Qi et al. | IEEE | 2024


    Intention-Driven Trajectory Prediction for Autonomous Driving

    Fan, Shiwei / Li, Xiangxu / Li, Fei | IEEE | 2021